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ABSTRACT

The characteristics of the plasma around a slender,
slightly blunted coneduring re-entry are discussed in
relation to the plasma sheath transmission problem.
The flow field around the aforementioned vehicle is
qualitatively described, and the plasma and collision
frequency distribution around a perfectly sharp cone
during re-entryis presented graphically. The methods
employed in computing the presented values of the
plasma parameters are outlined and referenced in the

Appendix.
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NOMENCLATURE

fp plasma frequency, cps

h enthalpy

H total enthalpy = h + uZ /2

Le Lewis number

M Mach number

P static pressure

Pr Prandtl number

R gas constant

r recovery factor

Re Reynolds number

T temperature

u velocity parallel to surface

x distance along cone surface from vertex
y distance normal to cone surface

) boundary layer thickness

Oc cone semivertex angle

osh shock angle

n viscosity

v electron collision frequency, collision/sec

Subscripts

1 laminar boundary layer

t turbulent boundary layer
w wall conditions

) inviscid surface conditions
(o] free stream conditions
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I. INTRODUCTION

The characteristics (i.e., plasma and collision frequency distributions) of the
plasma around a slender, slightly blunted cone during re-entry are discussed
in relation to the plasma sheath transmission problem. The flow field around
the aforementioned vehicle i8 qualitatively described, and the plasma and

collision frequency distribution around a perfectly sharp cone during re-entry

is presented graphically.

II. QUALITATIVE DESCRIPTION OF FLOW FIELD

The flow field about a slender, slightly blunted re~entry vehicle can be roughly
divided into five regions, as shown in Fig. 1. With the exception of the shock
wave, the boundaries between the regions are, of course, not sharp, well

defined ones, but this fact should not detract from the following discussion,

Region 1 is the undisturbed atmosphere. Region 2 contains air which has
passed through the strong, nearly normal portion of the shock wave and is,
therefore, at a higher pressure, temperature, and density than the free
stream and possesses a significant electron density. The gradients of the
properties in this region are such that diffusive, viscous, and thermal con-
duction effects may become appreciable, particularly about bodies with small
nose radii, although these effects are usually neglected. Region 3 contains
air which has passed through the conical portion of the shock wave. For the
slender bodies and flight conditions of interest here, this air does not contain
an appreciable number of electrons, although it is of course at a higher tem-
perature, pressure, and density than the free stream. The gradients of the

properties in this region are such that the dissipative effects are negligible.
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REGION 3

REGION 1|

REGION 4

{NOT TO SCALE) REGION 5§

Fig. 1. Qualitative Flow Pattern Around Re-entry Vehicle

Region 4 is the laminar boundary layer, and Region 5 is the turbulent boundary
layer. Both of these regions are characterized by large gradients in the
plasma properties (except the pressure, which is constant) in the direction
normal to the body surface and small gradients in the streamwise direction.
The diffusive and dissipative effects are of prime importance in this region.

In addition to air, these boundary layers may also contain vaporized ablative
material and /or other contamination from the body surface. The point on the
body at which transition from laminar to turbulent flow occurs is a function,
primarily, of the Reynolds number of the flow outside the boundary layer

and is such that at high altitudes the boundary layer tends to be completely

laminar, whereas at low altitudes it tends to be completely turbulent.



A significant feature of the flow field is that at some distance downstream

of the nose, Region 2 disappears; the air in this region has been consumed

by the boundary layer, and the flow field resembles that around a perfectly
sharp body. The character of the boundary layer changes markedly depending
upon whether the air is supplied by Region 2 or Region 3. When air is supplied
by Region 2, the maximum temperature and electron density occur at the

outer edge of the boundary layer, as heat transfer to the body more than off-
sets viscous heating effects. When the air to the boundary layer is supplied

by Region 3 (the case for a perfectly sharp body), the peak temperature and
electron density occur within the boundary layer and are governed by a

balance between viscous heating and heat transfer to the body.

The chemical processes occurring in the flow vary considerably over the
regions of interest. At high altitudes, collision frequencies are very low,
and essentially no chemical reactions occur (frozen flow). As the altitude
decreases, collisions become more frequent, and chemical reactions occur
to an appreciable extent (nonequilibrium flow). At sufficiently low altitudes,
the collision frequencies are adequate for chemical equilibrium to be attained
(equilibrium flow). The effects on the plasma parameters of flow in the first
two regimes are far beyond the scope of this report; for present purposes,

it is sufficient to state that the transition to equilibrium flow occurs between
100, 000 and 150,000 ft.

The foregoing discussion indicates that for sufficiently low altitudes at dis-
tances several nose radii back from the blunted portion of a slender body, the
calculation of the properties of laminar and/or turbulent boundary layers for
the flow of clean air in thermodynamic equilibrium over the related sharp
body yields a reasonable estimate of the significant features of the plasma

found around the body during re-entry.



III. RESULTS FOR CLEAN AIR IN THERMODYNAMIC EQUILIBRIUM

Asg an aid in gaining some appreciation for the magnitudes of the plasma
parameters in the vicinity of a blunt nose, the plasma and collision frequen-
cies occurring behind a normal shock wave are shown in Fig. 2 as a function
of vehicle altitude and velocity. A typical trajectory for a re-entry vehicle
of the type considered is also shown in this figure. The significant features
are first that v < fp at the higher altitudes, with v = fp at approximately
75,000 ft; and second, as will be seen, the magnitudes of f and v are of the
order of 102 times those found in the boundary layer far back from the blunted
nose. It should be pointed out that the units employed herein for plasma and
collision frequency are those most amenable to physical interpretation and
are not consistent ones for the determination of the dielectric properties.
The consistent units are either w(rad/sec) and v(collisions/sec) or f(cps)

and v (collisions/sec)/2n.
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Fig. 2. Plasma Characteristics in Stagnation Region



The remainder of the results presented here refers to a sharp cone with a
10 deg semivertex angle and a wall temperature of 2000°K. These conditions
are representative of a re-entry vehicle of the type considered. (See the
Appendix for the methods employed in computing the presented values of the

plasma parameters.)

In Fig. 3, the maximum values of plasma and collision frequencies occurring
in either laminar or turbulent boundary layers are shown as a function of the
vehicle altitude and velocity. It is to be noted that these peak values are not
a function of the distance from the cone vertex. Again, at higher altitudes,

v < fp. with v = f_ at approximately 125,000 ft. The sensitivity of these
results to the cone angle and wall temperature is not great; the plasma
frequency decreases by approximately 5-10 per cent per degree of decrease
in cone angle (the greater decrease at higher velocities), while it decreases
by approximately 25 per cent per 1000°K decrease in wall temperature. The

collision frequency is somewhat less sensitive than the plasma frequency.
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Fig. 3. Plasma Characteristics of Sharp Cone
(Peak Boundary Layer Condition)
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The laminar boundary layer thickness (in the form 61/'~/§c) is plotted as a
function of vehicle altitude and velocity in Fig. 4. This figure also shows
the distances from the vertex at which transition to turbulence may be
expected to occur. The significant features here are the Nx growth rate
and the relative insensitivity of the thickness to vehicle velocity. It should
be pointed out that the point at which transition occurs may be only crudely
estimated.
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The turbulent boundary layer thickness (in the form 6t/xo‘ 8) is shown in
Fig. 5 as a function of vehicle velocity and altitude. The significant features
are the faster growth rate than the laminar case (xo' 8 versus Ax) and the

relative insensitivity of the thickness to vehicle velocity.

1O
S,

VELOCITY, FPS X 10>

i 7 /‘

SEMIVERTEX ANGLE = 10 DEG
WALL TEMPERATURE = 2000° K

) 80 100 150 200 2%0 300
ALTITUDE, FT X 107

TURBULENT BOUNDARY LAYER THICKNESS PARAMETER 8,/:°%, F

Fig. 5. Turbulent Boundary Layer Thickness on a Sharp Cone

Figures 6 and 7 show typical profiles of the plasma and collision frequencies
found in the laminar and turbulent boundary layer as a function of normalized
distance from the cone surface (y/6). In Fig. 6, the effect of vehicle alti-
tude is indicated, while Fig. 7 shows the effect of vehicle velocity. The
significant features are that the maximum condition in the boundary layer
occurs much closer to the surface in the turbulent case, and that the collision

frequency is relatively constant across the boundary layer.



SPNINY SIOIYS A JO 3199337 aY3 Burjeotpul auonH daeyg e uo sxake]
Axepunog judInqIn] pue Ieurwe] jO sa[1joid Adousnbaig ewseld pue uorston ‘9 ‘Brg

AIN3NO 34
sol ool $6 06 X 08 s oL 9
7 7 I o0
/ 93S/SNOISITI0D
| \ \ \ { ‘4 01907 ‘AIN3ND3¥4 NOISITI0) —— | 120
N_\ \ \ | sd2 *95 01907 ‘AIN3NO3Y3 YWSVYd
A . _ -
] | ¥o »
z
! z
_ _ :
1 NG Sd4 ‘000°82 = ALID0TIA <
1 %0002 = UNLVH3INIL 30VAuNS |- g0
\ | 930 Ol= IIONV X3IL¥3AINIS
— / /
80
000'002—
000'0s! W
000001
14 ‘3aniinv
1

o'l

oLe -

2eL’l—~

6040~

(87419901 ‘IN3INBYNL
30V44NS INOD WON4 3INVLSIG QIZITVWHON

SSL1°0~




suon daeyg e uo szafe] Ax1epunog

jjuaINQIn] pue Jeutwre] Jo sa[1yoxg Ld>usanbaig ewiselqg pue uoision ‘L ‘31g
AON3INOINS
00! S6 06 X o8 S oL n.w
\ \ 535/SNOISIT0D
‘4 01907 "ADNINO3YS NOISITO) —— I S
N $d5°'9) 01901 *AIN3INOIYS YWSYId —
N NG / 14 000°00! = 3GN 111V
%o 0002 = 3¥NIVYISW3L 3DVIuNS|—{9°0
/ / / 930 0! = 3TNV X3I1H3IAINIS
N Jn —— |
80
O-000'81 .\\
000'22
000'82
Sdd ‘ALID0T3A
s ol

g/f ‘¥VYNINVT

1"
IgOh.n -
-
-5
—ees - 3
c
c
m
z
=
-
ijh.OllW
°
<
S
®
—16SLU0-

30v4uNs 3NOD WON4 3ONVLSIO Q3IZITVAYON

-10-



APPENDIX

METHODS AND SOURCES FOR CALCULATIONS

The methods employed in computing the presented values of the plasma

parameters are outlined herein.

A. CONE SURFACE

For the purposes of this computation, values of the fluid properties at the
cone surface are required (e.g., Ugs h6’ Pb)' The inviscid, supersonic,
axisymmetric flow about a sharp cone has been solved for both perfect gases
and air in thermodynamic equilibrium. Solutions for perfect gases appear in
Refs. 1, 2, and 3, while solutions for air are given in Ref. 4. For present
purposes, the conical shock wave is usually of insufficient strength for
dissociation to be appreciable (Moo sin Oc < 5). In these cases, the shock
angle and surface pressure coefficient are obtained from Ref. 3 (perfect gas,
y = 1.4), and the enthalpy at the cone surface was computed approximately

by the relation

h
6 _ 2 .2
T 1+ 0.?.02Moo sin gsh
e}
These approximations do not contribute significant error to the results at the

small cone angle of interest. For shock waves for which Moo sin Oc > 5, the

properties at the cone surface were obtained from Ref. 4.
B. LAMINAR BOUNDARY LAYER

Unfortunately, exact solutions for the laminar boundary layer over a sharp
cone for air in thermodynamic equilibrium are not available. Work relevant
to this problem is summarized in Ref. 5. Results for a gas satisfying the
ideal gas law, p = pRT, and variable properties are given in Refs. 6 and 7;

results for air in thermodynamic equilibrium with Le = 1 are available in

-11-



Ref. 8, although the value for the dissociation energy of nitrogen employed
in the computation is incorrect. Fortunately, in the region of interest of the
present computations, the dissociation effects do not affect the boundary
layer thickness appreciably. The thickness for cones is calculated from the

empirical relation presented in Ref. 9,

T 0.8
o1 Re_ = 5.20f max
x 6~ J3 T

which correlates the data of Ref. 7 in the region of interest and also is in

agreement with the results of Ref. 8. The thickness, 6,, is defined here as

ll
the point where the velocity in the boundary layer reaches 99.5 per cent of the
inviscid surface value.

The velocity profile is computed approximately from the cubic equation:

5 = 2(5) - (%)

which in the region of interest yields results within 20 per cent of those of
Refs. 6 and 7.

(=g}

The total enthalpy profile is computed from the usual Crocco relation

H-H
—— o
H6-Hw s

which is exact for Pr = Le = 1 and is a fair approximation in the present

case, although the enthalpy tends to be overestimated.

-12-



C. TURBULENT BOUNDARY LAYER

The turbulent boundary layer thickness is estimated from the empirical

correlations, based on the reference enthalpy method, developed in Ref. 10:

0.8 . 0.2
gt - 0.0194x (ﬁ) (}l_’i)
(Rex) Ps H6
5 h
Lt-g4 (1,29F‘.£+ l) (1 +1.51p)
t r
5, h
.°:=8+(I.Z9F-r-+l) (1 + 3.02~B)
uZ
- 0
B =5
2h6
uZ
_ 6
hr-h6+ l'-z—

p<4

where p* and p* are to be evaluated at the surface pressure and reference

enthalpy, which are defined by

h* _0.5+0 sh‘"+o 22rp
hy hy

The accuracy of this correlation is difficult to evaluate, although it does
correlate available experimental data (for M < 10) within 40 per cent.

The velocity profile is assumed to be given by

1/7

5= ()

)
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which is a good approximation for low speed flow; also, there is evidence

that, at the high Mach numbers of interest here, this approximation is poor.

The total enthalpy profile is again assumed to be given by the Crocco relation;
again, there is evidence that this approximation becomes poor at high Mach

numbers.
D. AIR

The thermodyramic properties of air at high temperatures are obtained from
Ref. 11; the transport properties (only viscosity is required for the present

computations) are obtained from the compilation of Ref. 12.

The plasma frequency (or electron density) for air in thermodynamic equi-
librium is obtained from unpublished data by Bleviss. * The collision

frequency is obtained from Ref. 13.

%k
Z. O. Bleviss, Private Communication, Physical Research Laboratory,
Aerospace Corporation.
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